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Abstract. We consider a multicomponent ensemble of charged fermions which are constrained
to move on the plane. By just retaining particle–particle ladder diagrams in Goldstone’s expression
for the energy shift and approximating the kernel of the resultant integral equation, we obtain for this
system an analytical Yasuhara-like formula for the contact pair correlations that includes screening
effects. An undesirable pseudo-screening due to the kernel approximation is overcome by adding
a corrective term into the integral equation. In particular, we use the case in which the system has
only two species of opposite charge to model a quantum well as a two-dimensional electron–hole
plasma. The electron–hole correlation at contact so calculated is taken as the enhancement factor
in the photoluminescence from the quantum well and it is checked against available experimental
data for the density dependence of the electron–hole plasma lifetime.

1. Introduction

Progress in the fabrication of semiconductor heterostructures [1–5] has motivated, in recent
years, an increasing interest in the study of their physical properties. Special attention has been
given to the superlattices called quantum wells [6–8] which are made in such a way that carriers
are limited to moving practically on a plane. The behaviour of these quasi-two-dimensional
systems has been intensively investigated [9–11]. In particular, diverse photoluminescence
experiments have been performed in order to achieve a better understanding of them [12,13].

For many years several of the properties of conductor solids have been studied theoretically
following the Sommerfeld point of view [14]. In that picture, the conduction electrons are
considered as an ensemble of negatively charged fermions whereas the ionic lattice is thought
of as a neutralizing continuum which is taken into account just through a dielectric constant
(the jellium model). A similar model has been sometimes used to describe photoexcited
semiconductors, the carriers being now electrons and holes [15].

Application of many-body theories to these models in three dimensions has shown that
perturbation schemes, for example the random-phase approximation (RPA), describe the long-
range correlations well [16, 17]. However, the RPA, like more elaborate theories which are
based on self-consistent approaches (e.g. Hubbard’s [18]), generally give unphysical short-
range behaviour [17,19].
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In order to handle these correlations, several authors [20–23], have used theladder
approximation. By considering only the ladder diagrams in the Goldstone formula for the
energy shift [16], Yasuhara [21–23] found a closed expression for the contact pair correlation
between electrons in the degenerate 3D jellium at metallic densities. Recently we have
generalized this result to 3D multicomponent fermionic systems whose species have arbitrary
masses, charges and densities [24,25].

The ladder approximation was also applied by Isawa and Yasuhara [26] and by Nagano,
Singwi and Ohnishi [27] to study short-range correlations in the degenerate 2D electron gas.
In particular, Isawa and Yasuhara wrote the electron–electron pair correlation at contact,
gee(r = 0), in terms of a certain functionIee(k) that satisfies an integral equation. Since
the ladder approximation retains only diagrams that connect just pairs of particles, Isawa and
Yasuhara’sgee(r = 0) ignores screening effects which are important even in 2D. They further
obtained an analytical expression forgee(r = 0) by approximating the kernel in their integral
equation. This expression compares surprisingly well with the Monte Carlo simulations of
Tanatar and Ceperley [28] for the 2D electron gas. However, as was already recognized
by Yasuhara [21], this agreement is fortuitous since the kernel approximation that they used
introduces a kind of pseudo-screening that compensates for the true screening that the ladder
approximation does not take into account.

In this work we first extend the analytical expression for the contact pair correlations
reported in references [26] and [27] to systems with an arbitrary number of species of charged
fermions, and then improve the resulting formulae in such a way that the undesirable pseudo-
screening due to the kernel approximation is eliminated whereas the effects of the true screening
are introduced in a more accurate form. These effects can be important, even in 2D, especially
when species with charges of opposite sign are present.

An investigation of the density dependence of the electron–hole plasma decay time in
semiconductor quantum wells [29] gives us a way to experimentally check the contact pair
correlations that we have obtained theoretically. In fact, if the quantum wells are viewed as an
electron–hole plasma on the plane, then the inverse of the total radiative decay rate should be
proportional to the contact correlation between electrons and holes [15].

In the next section we obtain the analytical contact pair correlation functions of a two-
dimensional multicomponent system of interacting fermions that we are looking for. To this
end, following Yasuhara, we retain only ladder diagrams in the Goldstone formula and take the
large-wavenumber limit of the functional derivative, with respect to the interaction potential,
of the energy shift. In our calculation we explicitly consider the static screening by introducing
an appropriate momentum cut-off. The kernel of the integral equation that results from these
manipulations is conveniently approximated to obtain the desired analytical expression. In
order to eliminate the pseudo-screening caused by the kernel approximation, we finally add
a corrective term into the integral equation. In section 3, we use the particular case of two
species with opposite charges to describe quantum wells as an ensemble of electrons and
holes moving on the plane. Since the electron–hole correlation at contact can be taken as the
enhancement factor for the photoluminescence from semiconductor quantum wells, the theory
can be checked against available experimental data.

2. The multicomponent system of charged fermions

2.1. Pair correlation functions

Let us first consider in general a system ofN species of charged fermions moving on a plane
of areaA and which is characterized by a dielectric constantκ0. LetZα be the charge (in units
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of the electron chargee) and denote bynα = Nα/A the particle number density for speciesα
(α = 1, 2, . . . , N), whereNα is the number of particlesα lying onA.

The system Hamiltonian is written in second quantization as

Ĥ =
∑
k

N∑
α=1

εαk â
α†

k â
α
k +

1

2A

∑
q

∑
αβ

vαβ(q)(n̂
α
q n̂

β
−q − N̂αδαβ) (1)

wherevαβ(q) is the Coulomb interaction between particles of typeα andβ:

vαβ(q) = 2πZαZβe2

κ0q
(2)

andεαk is the kinetic energy for particles of typeα with momentumk. Denoting asmα the
mass of particlesα, we have

εαk =
h̄2k2

2mα
. (3)

In equation (1),N̂α = n̂αq=0 indicates the particle number operator for speciesα, andn̂αq
the particle density operator for particles of speciesα and momentumq:

n̂αq =
∑
k

âα
†

k+q â
α
k . (4)

Hereâα
†

k andâαk are creation and annihilation operators, respectively, for speciesα.
Our interest lies in the short-range behaviour of the pair correlation functionsgαβ(r).

These functions are proportional to the probability density of finding a particle of speciesα at
a distancer from a particle of speciesβ. They are related to the partial structure factors

Sαβ(q) ≡ (nαnβ)−1/2A−1〈n̂αq n̂β−q〉
via Fourier transforms:

gαβ(r) = 1 +
1

(nαnβ)1/2

∫
dEq
(2π)2

ei Eq·Er [Sαβ(q)− δαβ] . (5)

In turn, the partial structure factors are expressed as functional derivatives of the energy
shift1E caused by the perturbative interaction:

Sαβ(q)− δαβ = 2

(nαnβ)1/2

δ 1E

δvαβ(q)
. (6)

2.2. Contact values of correlation functions

If we consider a paramagnetic system where the diverse species have spin 1/2, then

gαβ(r = 0) =
{

1
2g
↑↓
αα (r = 0) α = β

g
↑↓
αβ (r = 0) α 6= β.

(7)

That is, in order to calculategαβ(r = 0), only the spin-up–spin-down pair correlations are
needed. To obtain them we use the Goldstone formula for the energy shift [16]. Considering
just ladder diagrams [21–23], this reads for unlike spins

1E↑↓ = 1

2

∑
q

∑
k1k2

∑
αβ

vαβ(q)
fα(k1)

[
1− fα(k1 + q)

]
fβ(k2)

[
1− fβ(k2 − q)

]
εαk1
− εαk1+q + εβk2

− εβk2−q
Iαβ(k1, k2; q)

(8)
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where

Iαβ(k1, k2; q) = vαβ(q) +
∑
q ′

vαβ(|Eq − Eq ′|)
[
1− fα(k1 + q ′)

] [
1− fβ(k2 − q ′)

]
εαk1
− εαk1+q ′ + ε

β

k2
− εβk2−q ′

× Iαβ(k1, k2; q ′). (9)

Herefα(k) denotes the Fermi distribution for fermions of speciesα: fα(k) = 1−2(k − kαF )
with 2(x) the Heaviside step function andkαF =

√
2πnα the 2D Fermi momentum.

Replacing1E↑↓ in equation (6) by this expression we obtain, in the short-wavelength
limit q →∞,

S
↑↓
αβ (q)− δαβ = −

4vαβ(q)

(nαnβ)1/2ε
αβ
q

∑
k1k2

fα(k1)fβ(k2)

×
[

1 +
∑
q ′

[
1− fα(k1 + q ′)

] [
1− fβ(k2 − q ′)

]
εαk1
− εαk1+q ′ + ε

β

k2
− εβk2−q ′

Iαβ(k1, k2; q ′)
]2

(10)

whereεαβq = h̄2q2/(2µαβ) with µαβ (≡mαmβ/(mα +mβ)) the reduced mass.
From the previous equations it can be proved that, in the ladder approximation,

lim
r→0

g
↑↓
αβ (r) = − lim

q→∞
ε
αβ
q

(nαnβ)1/2vαβ(q)

[
S
↑↓
αβ (q)− δαβ

]
(11)

which is the multicomponent version of the Kimball–Niklasson relation [30, 31]. Equ-
ations (11) and (10) yield

g
↑↓
αβ (r = 0) = 4

nαnβ

∑
k1k2

fα(k1)fβ(k2)

×
[

1 +
∑
q ′

[
1− fα(k1 + q ′)

] [
1− fβ(k2 − q ′)

]
εαk1
− εαk1+q ′ + ε

β

k2
− εβk2−q ′

Iαβ(k1, k2; q ′)
]2

. (12)

As we are concerned with the short-range behaviour of the correlations (|q ′| � kαF ;
|q ′| � k

β

F ), we can approximate equation (12) by replacing the term in brackets by its value
atk1 = k2 = 0 [21–27]. Using the notationIαβ(q) ≡ Iαβ(0, 0; q), we obtain

g
↑↓
αβ (r = 0) =

[
1− µαβ

h̄2π

∫
Iαβ(q)

q2
2(q − kαF )2(q − kβF ) dEq

]2

(13)

whereIαβ(q) satisfies the integral equation

Iαβ(q) = vαβ(q)− µαβ

h̄2π

∫
vαβ(|Eq ′ − Eq|) Iαβ(q

′)
(q ′)2

2(q ′ − kαF )2(q ′ − kβF ) dEq ′. (14)

In the integrands of equations (13) and (14) we make the following replacement of the
product of the Heaviside step functions:

2(q − kαF )2(q − kβF ) −→ 2(q − kαβF )
where the momenta cut-offs arekαβF = max(kαF , k

β

F ). We further reduceq andq ′ with respect
to the unitkαβF , andIαβ(q) andvαβ(q) with respect to the unitvαβ(k

αβ

F ). Thus equations (13)
and (14) yield

g
↑↓
αβ (r = 0) =

[
1− λαβ

∫ ∞
0

Iαβ(q)

q
2(q − 1) dq

]2

(15)
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and

Iαβ(q) = 1

q
− λαβ

2π

∫
2(q ′ − 1)

|Eq ′ − Eq|
Iαβ(q

′)
(q ′)2

dEq ′ (16)

where

λαβ = 2πZαZβe2

κ0h̄
2π

µαβ

k
αβ

F

. (17)

The integral equation (16) has the same form as the one reported by Isawa and Yasuhara
[26] for the two-dimensional electron gas. By reducing its kernel according to

1

|Eq ′ − Eq| ∼
{
q−1 q ′ < q

(q ′)−1 q ′ > q
(18)

they obtained an approximate solution that, when introduced into the one-component version
of equation (15), gives a closed analytical expression for the contact electron–electron pair
correlation function for the electron gas. The dotted curve in figure 1 representsgee(0)
versus the parameterrs = [aB

√
πne]−1, whereaB is the Bohr radius, calculated using the

Isawa and Yasuhara analytical expression [26]. The two open squares indicate the values
obtained from Monte Carlo simulation in reference [28]. It should be remarked that the rather
good fit is merely fortuitous, since the kernel approximation, equation (18), introduces a kind
of pseudo-screening that compensates for the true screening which is ignored by the ladder
approximation [21].

Figure 1. Contact electron–electron pair correlation functions for the 2D electron gas calculated
in the ladder approximation using the Yasuhara simplification for the integral equation kernel. The
solid curve includes static screening and the corrective term. The dotted curve includes neither
the screening nor the corrective term. The dashed curve just includes the corrective term. The
two open squares represent the corresponding results obtained from the Monte Carlo simulations
of reference [32] and the full circles represent the numerical solution in the ladder approximation
without screening and using the complete kernel (reference [27]).
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2.3. Screening

From the previous calculations it is evident that the main interaction that the ladder approx-
imation considers is the Coulombic one between independent pairs of particles. The inter-
actions with all other particles are neglected, although they do reveal their presence through the
existence of the Fermi surface. In particular, equation (16) does not take the static screening
into account. However, we expect it to be important even in 2D, especially when charges of
opposite sign coexist. Therefore it is, in principle, surprising that the formula given by Isawa
and Yasuhara works so well for the electron gas. Actually, as we comment below, using the
kernel approximation, equation (18), can be thought of as an indirect way of screening the
interactions.

To directly account for screening effects in equation (16), we assume that the interaction
between any two particles will just be effective for momentum transfers larger than some
momentum cut-offkc:

Iαβ(q) = 1

q
− λαβ

2π

∫
|Eq ′−Eq|>kαβc

2(q ′ − 1)

|Eq ′ − Eq|
Iαβ(q

′)
(q ′)2

dEq ′. (19)

As the cut-off momentum, we choose [32]kc = 0.43kT F wherekT F is the Thomas–Fermi
screening momentum. For the multicomponent system in 2D, this reads

kT F = 2

κ0aB

( N∑
α=1

mαnαZ
2
α

)/(
me

N∑
α=1

nα

)
(20)

whereme is the electron mass andaB is the Bohr radius. We denote bykαβc = kc/k
αβ

F the
reduced form of the cut-off momentum.

We next divide the integration domain in equation (19):∫
|Eq ′−Eq|>kαβc

· · · dEq ′ =
∫
|Eq ′−Eq|<∞

· · · dEq ′ −
∫
|Eq ′−Eq|<kαβc

· · · dEq ′. (21)

Since the kernel 1/|Eq ′ − Eq| dominates atEq ′ = Eq, the last term can be approximated [32] by
evaluatingIαβ(q ′)/(q ′)2 at that point and hence removingIαβ(q)/q2 from the integrand. Thus
we make the approximation, forq > kF + kc,∫

|Eq ′−Eq|<kαβc

2(q ′ − 1)

|Eq ′ − Eq|(q ′)2 Iαβ(q
′) dEq ′ ≈ 2πkαβc

Iαβ(q)

q2
. (22)

Then equation (19) yields

Iαβ(q) = 1

q
− λαβ

2π

∫
|Eq ′−Eq|<∞

2(q ′ − 1)

|Eq ′ − Eq|
Iαβ(q

′)
(q ′)2

dEq ′ + λαβkαβc
Iαβ(q)

q2
. (23)

In order to obtain an analytical solution, the kernel in this integral equation can be approx-
imated by equation (18). But, as was pointed out, this approximation is equivalent to inserting
an additional screening term since it underestimates the pair potential in the region|Eq ′− Eq| < k′

with k′ ' 1. Thus, the use of the estimate given by equation (18) in equation (23) implies
considering a double screening. We overcome this problem by adding in equation (23) the
expression

−λαβ
2π

∫
|Eq ′−Eq|<k′

2(q ′ − 1)

|Eq ′ − Eq|
Iαβ(q

′)
(q ′)2

dEq ′ + λαβ
q

∫ q

q−k′
Iαβ(q

′)
q ′

dq ′ + λαβ
∫ q+k′

q

Iαβ(q
′)

(q ′)2
dq ′

≈ λαβ

2π

∫
|Eq ′−Eq|<k′

2(q ′ − 1)

|Eq ′ − Eq|
Iαβ(q

′)
(q ′)2

dEq ′ ≈ λαβk′ Iαβ(q)
q2

(24)
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so that we have

Iαβ(q) = 1

q
− λαβ

q

∫ q

1

Iαβ(q
′)

q ′
dq ′ − λαβ

∫ ∞
q

Iαβ(q
′)

(q ′)2
dq ′ + λαβkαβc

Iαβ(q)

q2
− λαβk′ Iαβ(q)

q2
.

(25)

Using the expansion

Iαβ(q) =
∞∑
n=0

a
αβ
n

qn+1
(26)

and takingIαβ(q) ≈ aαβ0 /q in the two last terms of equation (25), we obtain

Iαβ(q) = aαβ0

[(
1 +

12k

λαβ

)
I1(2

√
λαβ/q)√
λαβq

− 12k

λαβq
− 6k

q2

]
(27)

where

a
αβ

0 =
[(

1 +
12k

λαβ

)
I0(2

√
λαβ)− 12k

(
1

λαβ
+ 1 +

λαβ

4

)]−1

(28)

with I0 andI1the modified Bessel functions of the first kind and order 0 and 1, respectively,
and

k ≡ kαβc − k′. (29)

Substitution of this expression forIαβ(q) into equation (15) finally gives for the pair
correlations at zero distance

g
↑↓
αβ (r = 0) =

[
1− aαβ0

(
1 +

12k

λαβ

)[
I0(2

√
λαβ)− 1

]
− 12k − 3λαβk

]2

. (30)

We observe that forkαβc = k′ = 0, namely when the screening and the correction are
neglected, equations (29), (30) yield

g
↑↓
αβ (r = 0) = 1[

I0(2
√
λαβ)

]2 (31)

which is the multicomponent version of the result that Isawa and Yasuhara reported for the
two-dimensional electron gas [26].

In equations (28) and (30),k′ can be considered as an adjustable parameter that depends
on each particular case. However, we try to find an approximate value for it that is valid for
any system. To this end, we observe that, instead of equation (24), the exact corrective term
should be

−λαβ
2π

∫
|Eq ′−Eq|<∞

2(q ′ − 1)

|Eq ′ − Eq|
Iαβ(q

′)
(q ′)2

dEq ′ + λαβ
q

∫ q

1

Iαβ(q
′)

q ′
dq ′ + λαβ

∫ ∞
q

Iαβ(q
′)

(q ′)2
dq ′.

Then, considering the expansion (26) to first order, we have that the parameterk′ approximately
satisfies
k′

q3
≈
∫
|Eq ′−Eq|<∞

2(q ′ − 1)

|Eq ′ − Eq|
1

(q ′)3
dEq ′ − 1

q

∫ q

1

1

(q ′)2
dq ′ −

∫ ∞
q

1

(q ′)3
dq ′. (32)

From these considerations we conclude thatk′ must be approximately the same for all of the
systems since it does not depend on the number of species, charges and/or densities. Thus we
calculate it in such a way that, when using equations (28) and (30) to describe the electron
gas without screening (kee

c = 0), we adjust one of the points that Naganoet al have obtained
numerically using the non-approximate kernel [27]. In this way we obtaink′ = 1.3.
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In figure 1 we have plotted the contact electron–electron pair correlation as a function of
rs , calculated using equations (7) and (30), for the electron gas (α, β = e). We have already
commented that the dotted curve is the Isawa and Yasuhara result (kee

c = k′ = 0 in equation (30),
i.e. equation (31) withα, β = e) and that the squares are Monte Carlo results. The solid curve
is obtained using the complete expression (30) withk′ = 1.3 andkee

c = 0.608rs . The dashed
curve, on the other hand, was obtained by settingkee

c = 0 andk′ = 1.3. This analytical curve
neglects the static screening but includes the additional terms that correct the effect of using an
approximate kernel. The full circles, finally, represent the numerical result for reference [27],
which corresponds to solving the electron gas version of equations (15) and (16). We observe
that the dashed curve agrees quite well with the circles. In particular, the point withrs = 2 was
that used to find the value ofk′. It can also be appreciated that the Isawa and Yasuhara curve with
neither screening (kee

c = 0) nor correction (k′ = 0) is in good agreement with our curve that
takes into account both the static screening and the improvement to the kernel approximation.
It is the fortunate effect of pseudo-screening due to the kernel approximation which explains
the notable success of the Isawa–Yasuhara expression when applied to the 2D electron gas.

3. Quantum wells as an electron–hole plasma

As was mentioned, the available experimental data on luminescence from quantum wells
should enable us to directly probe the contact pair correlations that we have found from the
ladder approximation. In fact, these semiconductor heterostructures are fabricated in such a
way that the carriers are limited to moving on very thin sheets which can, in principle, be
viewed as planes.

Quantum wells have optical properties that show very interesting features due to the
existence of diverse elementary excitations (excitons, biexcitons, free electron–hole (e–h)
pairs etc). In GaAs/AlGaAs quantum wells, when the carrier surface densities are low
(65× 1010 cm−2), the excitons determine the optical properties even at room temperature
[13, 33]. At higher densities, induced by strong optical or electrical excitations, the exciton
wave functions overlap, so they lose their individuality and an e–h plasma is formed [34].

The e–h plasma decay time for GaAs/Ga0.77Al0.23As quantum wells at the temperature
T = 155 K has been measured by Bongiovanni and Staehli for diverse e–h pair densities [29].
They found that only radiative recombination is important and that the non-radiative processes
have negligible effects on the total decay time. In figure 2 we show the experimental data
of reference [29] which are relevant to our work. Squares show the measured total lifetimes
for plasmas excited by infrared lasers. For the higher densities it is necessary to take into
account that, in the experiment, once the third subbands are occupied, the absorption of the
laser light decreases and the points shown are those already conveniently corrected in [29].
At densities still higher than those considered in the figure, the radiative lifetime becomes
practically independent of the density due to fine intersubband transition effects [29].

In the figure, the curves forT/TF versus the density, whereT = 155 K andTF is the
Fermi temperature for the carriers, namely for the electrons or the holes, are also shown. For
densities ranging between 5× 1012 and 1013 cm−2, we have thatT/TF < 1 for both electrons
and holes, and the plasma can be considered as completely degenerate. Accordingly we argue
that in that range of densities the quantum well can be viewed as a system of free electrons and
holes atT = 0 and moving on the plane. Thus we can check the contact pair correlation that
we have obtained if we consider it to be the enhancement factor in the plasma recombination
rate [35]:

1

τr
= 1

τ 0
r

geh(0). (33)
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Figure 2. Left-hand axis: the electron–hole lifetime versus the electron–hole pair density for
a 2D system of electrons and holes calculated in the ladder approximation using the Yasuhara
simplification to the integral equation kernel and including static screening and the corrective term.
The parameters in the formulae were chosen (see the text) such as to describe the GaAs/GaAlAs
quantum wells of reference [29], which is also where the experimental data (open squares) were
taken from. Right-hand axis: the ratio of the sample temperature (155 K) to the Fermi temperature
for electrons and holes (dashed and dashed–dotted curves, respectively) versus the electron–hole
pair density for the system under study.

Here τr and τ 0
r denote the radiative decay time for the recombination of correlated and

uncorrelated, respectively, electrons and holes.
The curve forτr versus the electron–hole pair density that we have calculated for the

GaAs/Ga0.77Al0.23As quantum well using the equations (33), (7), (30), (28), (17) and 20),
adapted for a system of just electrons and holes (withα, β = e, h), is given by the solid curve
in figure 2.

To calculate the uncorrelated decay timeτ 0
r , we take into account that it is related to the

exciton lifetimeτexc [36,37] according to

τ 0
r = τexc

∣∣φ2D
eh (0)

∣∣2
n

(34)

wheren = ne = nh andφ2D
eh (0) denotes the contact hydrogen-like wave function describing

the in-plane e–h relative motion. We have [33]:|φ2D
eh (0)|2 = 2/πa2

exc, with aexc = aexc(Lz)
the exciton Bohr radius that depends on the thicknessLz of the quantum well. In particular,
the samples used in the experiment haveLz = 122 Å [29].

In order to evaluateτ 0
r using equation (34), we need to knowaexc(Lz = 122 Å) and

τexc(T = 155 K). We obtain the exciton radius for a GaAs sheet withLz = 122 Å
from the work of Bastardet al [38]. They plotted the dimensionless transverse extension
of the exciton wave functionaexc/aB versus the dimensionless well thicknessLz/aB . The
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bulk GaAs exciton Bohr radius calculated with a dielectric constantκ0 = 12.96 [39] and
effective electron and holes massesm∗e = 0.067me andm∗h = 0.45me is aB = 118.2 Å.
Thus we obtainaexc = 130 Å. On the other hand, from a study by Dawsonet al [40] of
the photoluminescence from GaAs/GaAlAs, 55 Å wide, for temperatures in the range 4–
295 K, we obtain (by averaging the results for the two samples reported) that, at 155 K,
τexc(Lz = 55 Å; T = 155 K) ∼ 8.2 ns. Considering [38, 41] an approximate value of
1.8 for the ratioτexc(Lz = 122 Å; T = 155 K)/τexc(Lz = 55 Å; T = 155 K), we have
τexc(Lz = 122 Å) = 14.8 ns, so (withn in cm−2) τ 0

r ∼ 5.57× 1012/n ns.
According to our assumption, the enhancement factor in equation (33),geh(0), is calc-

ulated for a completely degenerate system of electrons and holes using the formulae of the
previous section withk′ = 1.3. For the values of the dielectric constant and effective masses
considered here, we obtainλeh= −0.675× 106/

√
n andkeh

c = 0.306× 107/
√
n. This value

of geh(0) is then used to obtain the radiative decay time for the electron–hole recombination
given by the solid curve in figure 2.

We observe that, effectively, our curve fits the experimental data in the range 5× 1012–
1013 cm−2 quite well. At lower densities, as was expected, the approximation of a degenerate
plasma is not suitable. For higher densities, on the other hand, the theory is unable to account
for the flattening of the e–h plasma lifetime.

4. Summary

In this work, by just summing ladder diagrams in Goldstone’s perturbation formula, we have
obtained a closed Yasuhara-like expression for the contact pair correlation functions of charged
fermions moving on a plane which includes direct screening effects.

In order to obtain a full analytical formula, the kernel in the resultant integral equation is
approximated as Isawa and Yasuhara did. This approximation is equivalent to considering an
extra pseudo-screening and we improve the solution by inserting a corrective term. For the
pure electron gas, the screening plus the corrective term compensate in a way that explains
why the original formula of Isawa and Yasuhara for the 2D electron gas gives, by just including
the pseudo-screening effect of the kernel approximation, such good results.

In the binary case we were able to check our theoretical contact pair correlation function by
considering it as the plasma recombination rate enhancement factor for the photoluminescence
from GaAs/GaAlAs quantum wells viewed as an electron–hole plasma. The comparison with
the experimental data for the electron–hole lifetime shows good agreement over the range of
densities for which a full degenerate plasma is expected.
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